The Application of Optimized ICA Method Towards Endmember Extraction
نویسندگان
چکیده
The advent of hyperspectral image technology is a major leap in recent years, it obtains the surface of the earth image contains rich space, radiation and spectral information, Mixed pixels not only effects identification and classification precision of object, but also greatly hinder the development of quantitative remote sensing, so effectively interpret mixed pixels is an important problem for its applications. Based on optimized ICA method a novel hyperspectral unmixing approach is proposed in the paper, which introducing the similarity threshold technique to describe the statistical distribution of the pixels, and determine the criterion of candidate endmembers, A multi-core parallel processing method is proposed to increase its efficiency. The approach is capable of self-adaptation, and can be applied to hyperspectral images with different characteristics. Experimental results on both simulated and real hyperspectral data demonstrated that the proposed approach can provided an effective technique for the blind unmixing and obviously increase the processing efficiency and obtain accurate results at the same time.
منابع مشابه
Application of ANN-ICA Hybrid Algorithm toward Prediction of Engine Power and Exhaust Emissions
Artificial neural network was considered in previous studies for prediction of engine performance and emissions. ICA methodology was inspired in order to optimize the weights of multilayer perceptron (MLP) of artificial neural network so that closer estimation of output results can be achieved. Current paper aimed at prediction of engine power, soot, NOx, CO2, O2, and temperature with the ai...
متن کاملAn image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery
Although many endmember extraction algorithms have been proposed for hyperspectral images in recent years, there are still some problems in endmember extraction which would lead to inaccurate endmember extraction. One important problem is the variation in endmember spectral signatures due to spatial and temporal variability in the condition of scene components and differential illumination cond...
متن کاملA parallel unmixing algorithm for hyperspectral images
We present a new algorithm for feature extraction in hyperspectral images based on source separation and parallel computing. In source separation, given a linear mixture of sources, the goal is to recover the components by producing an unmixing matrix. In hyperspectral imagery, the mixing transform and the separated components can be associated with endmembers and their abundances. Source separ...
متن کاملMultiobjective Optimized Endmember Extraction for Hyperspectral Image
Endmember extraction (EE) is one of the most important issues in hyperspectral mixture analysis. It is also a challenging task due to the intrinsic complexity of remote sensing images and the lack of priori knowledge. In recent years, a number of EE methods have been developed, where several different optimization objectives have been proposed from different perspectives. In all of these method...
متن کاملAutomatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements
Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR a...
متن کامل